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A B S T R A C T

A comprehensive review of optimization research concerning the design and proportioning of concrete mixtures
is presented herein. Mixture design optimization is motivated by an ever-increasing need for designers and
decision-makers to proportion concrete mixtures that satisfy multiple – oftentimes competing – performance
requirements, including cost, workability, mechanical properties, durability, and environmental sustainability.
In this review, we first discuss common mathematical problem formulations, decisions, objectives, and con-
straints pertaining to concrete mixture design optimization. Subsequently, we examine the types of models
employed to approximate properties of concrete, which include a variety of linear combination, statistical,
machine learning, and physics-based models that are required to optimize the proportions of a mixture. We then
review and discuss computational methods used to optimize concrete mixtures in the context of surveyed lit-
erature. Finally, we highlight and discuss current trends and opportunities for advancing the field of concrete
mixture design optimization in context of the current state of the art.

1. Introduction

Global consumption of ordinary portland cement (OPC) concrete,
the most commonly used construction material in the world, has
reached approximately 10 billion metric tons per year [1]. Its unique
combination of strength, economic viability, availability of raw mate-
rial resources, moldability, and durability make OPC concrete an ideal
candidate for a wide variety of civil infrastructure applications. In ad-
dition, by varying the type and quantity of individual constituents in
the concrete mixture (e.g., cement, water, aggregate, admixtures), the
fresh- and hardened-state properties of OPC concrete can be tailored to
meet many different design specifications.

Concrete mixture design, also known as mixture proportioning, is the
process of selecting the type and quantity of individual constituents to yield
a concrete that meets specifiable characteristics for a particular application.
In general, traditional approaches for proportioning concrete mixtures can
be classified into two main methods: prescriptive and performance-based.

Prescriptive approaches are step-by-step design methodologies that,
when followed, help the designer proportion an acceptable concrete
mixture. Prescriptive proportioning methods have evolved from arbi-
trary 1-2-3 cement-sand-aggregate volumetric ratio methods estab-
lished in the early 1900s [2] to the present-day absolute volume
method (AVM) prescribed by the American Concrete Institute (ACI) [3]
and Portland Cement Association [4]. Given a target compressive
strength, slump (for workability), and air content (for freeze-thaw

durability), the PCA methodology for designing and proportioning
concrete mixtures guides the designer in selecting an appropriate water-
to-cementitious materials ratio (w/c), air content, admixture dosage,
and both fine and coarse aggregate content. Other prescriptive-based
approaches include both the old and new Bureau of Indian Standards
[5]. A primary advantage of prescriptive proportioning methods is that
the mixture proportioning is directed by the method itself; the decision-
maker need not make subjective design decisions. While these methods
are most effective for large-volume, general construction applications,
the lack of flexibility for a designer to tailor and tweak individual
mixture proportions is a notable limitation of the method.

In contrast to prescriptive proportioning methods, performance-
based mixture design methodologies impose no strict guidelines on the
amounts and ratios of constituents. Rather, this approach allows the
designer substantial leeway to meet design specifications by pro-
portioning mixtures directly from laboratory trial batches (a trial-and-
error, iterative approach) rather than the linear, non-iterative AVM. For
example, if the structural design specification requires a compressive
strength of 30MPa, the designer can select any amount of cementitious
material, water, and aggregate and prove, through trial-batch testing,
that the mixtures sufficiently achieve the strength requirement. Fig. 1a
demonstrates the process of traditional mixture design, where either
prescriptive or performance-based design methods are used to decide
upon mixture proportions; the output is one acceptable, but oftentimes
non-optimal, design solution.
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1.1. Experimental design optimization of concrete mixtures

Given the flexibility of performance-based approaches and a desire
to achieve the most economical mixture design solutions that meet
performance specifications, many research studies have attempted ex-
perimental optimization of concrete mixtures. The general process of
experimental optimization is visualized in Fig. 1b. Soudki et al. [6], for
example, aimed to experimentally maximize the compressive strength
of concrete mixtures by varying the water-to-cement (w/c) ratio, coarse
aggregate-to-total-aggregate ratio, total aggregate-to-cement ratio, and
curing temperature. Similar studies targeted the design of concrete with
experimentally maximized flexural strength [7], water absorption [8],
and consistency index (a measure of workability) [8]. Despite being
useful in their intent, experimental design optimization suffers from
exponential increases in the required number of samples and experi-
ments when many mixture parameters or values of those parameters are
considered as variables in the optimization. As a result, detailed ex-
perimental optimization of concrete mixtures can be both time- and
resource-intensive. In addition, the generalizability of the results ob-
tained from experimental optimization is limited due to nuanced dif-
ferences in concrete performance introduced by spatiotemporal en-
vironmental variability (i.e., temperature, humidity) and specific
constituent characteristics, such as the type and chemistry of cementi-
tious materials and the size, shape, and texture of aggregates.

While both prescriptive and performance-based approaches yield
acceptable design solutions, these methodologies do not result in truly
best-performing solutions, but rather well-performing proportions of
concrete mixtures. Furthermore, both approaches require a lengthy and
iterative design process with only one acceptable mixture design solu-
tion. To circumvent the experimental limitations of these methodolo-
gies, a significant body of research has recently focused on formulating
and validating computational design optimization approaches and tools

for concrete mixture proportioning that leverage the wealth of experi-
mental data concerning OPC concrete, advanced mathematical techni-
ques, and the power of high-performance computing.

1.2. Computational design optimization of concrete mixtures

Computational design optimization of concrete mixtures is a
mathematical—as opposed to experimental—approach to mixture
proportioning. Fig. 1c illustrates that computational optimization of
concrete mixtures is a process whereby an optimal design solution can
be found. In computational design optimization, the decision-maker
must decide upon the problem formulation, the modeled relationships,
and the optimization algorithm that should be employed. The problem
formulation involves defining the decision variables, objectives, and
constraints of the problem. Modeling involves choosing appropriate
mathematical relationships that model each objective as a function of
the decision variable. An optimization algorithm is typically chosen
based on its appropriateness to mathematically solve the problem.

1.3. Scope of the review

This review fully expounds on each of the three steps of computa-
tional design optimization of concrete mixtures, namely (1) for-
mulating, (2) modeling, and (3) solving the concrete mixture design
optimization problem. Each step, explicated in a discrete section of this
review, is discussed in the context of examples from the most salient
and state-of-the-art literature. In addition, this review provides a cri-
tical synopsis and discussion of research and development needs that
are required to advance the field of concrete mixture design optimiza-
tion.
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Fig. 1. (a) Traditional design; (b) experimental optimization; (c) computational optimization.
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2. Optimization problem formulation

Problem formulation, the first step of optimization, is the process of
defining the decisions, objectives, and constraints of the optimization
problem.

2.1. Decisions

Decisions, or decision levers, are independent variables of the opti-
mization problem over which the decision-maker typically has control
[9]. In other words, decisions are variables that can be altered to op-
timize a problem. In terms of classification, decision variables can be
either discrete or continuous. Table 1 provides examples of possible
decisions for concrete mixture problems. For instance, in concrete
mixture optimization problems, discrete decisions could be including or
not including a specific type of supplementary cementitious materials
(e.g. fly ash) or any other mixture constituent. Continuous decisions
might include the amount of a particular mixture constituent (e.g. mass
of coarse aggregate per unit volume), a ratio of two individual com-
ponents (e.g., w/c ratio), or concrete curing conditions (e.g. ambient
temperature, humidity). The multitude of decisions that could be in-
cluded in a concrete mixture optimization problem are discussed in
Mamlouk and Zaniewski [10].

2.2. Objectives

An objective is a quantification of a desired outcome for the problem
that one seeks to optimize (i.e., minimize or maximize). In optimization
problems, objectives are modeled as functions of the decision variables
(e.g., the cost of a mixture is a function of the types and amounts of the
mixture constituents). Furthermore, optimization problems can be for-
mulated as single- or multi-objective, which determines appropriate
solution methods. In the case of Cheng et al. [11], Meng and Valipour
[12], and Ji et al. [13], single-objective problems were solved because
the goal of the study was to simply optimize one objective, such as cost
or compressive strength.

Multi-objective problems have been considered in more recent lit-
erature, where researchers elucidate and study tradeoffs between
competing objectives. These objectives often include physical perfor-
mance, cost, and environmental impacts. Unlike single-objective pro-
blems, multi-objective problems have multiple potential solutions that
represent different compromises between objectives. The decision-
maker is the one who must ultimately decide which of the potential
solutions (and, therefore, which level of compromise among the ob-
jectives) is the most desirable for that particular problem.

2.3. Constraints

Constraints are mathematical functions of the decision variables,
such that when any constraint is violated, the solution is infeasible and
is discarded from the solution set. Therefore, a constraint could impose

a limit on a decision variable or objective, or as a separate function of
decision variable values that provides some additional restriction on an
acceptable solution. As an example, a restriction on the coarse ag-
gregate content would be a limit on a decision variable; a restriction on
the workability of the hardened concrete would be classified as a
constraint on an objective output. Furthermore, if both water and ce-
ment were independent decision variables, a minimum w/c ratio, a
function of two decision variables, could also be defined as a constraint.

The way constraints are imposed also warrants discussion. A con-
straint can be imposed by the designer or it can be imposed by a code or
standard. For instance, a designer may impose a constraint on the
compressive strength of the hardened concrete. In contrast, a constraint
imposed by a standard might be a limit on the w/c ratio, which is often
set by ACI 318. Table 2 provides more examples of possible constraints
on a concrete mixture design optimization problem. Although con-
straints are useful for setting acceptable bounds on a problem for-
mulation, care should be taken with their implementation because so-
lution sets with even small violations of the constraint will be discarded
and deemed unacceptable [14].

The specific decisions, objectives, and constraints of a problem are
chosen such that they represent the particular goals of the concrete
mixture design problem. For instance, if an engineer is designing an
OPC concrete, then the mixture decision variables (i.e., constituents)
will only need to include the amounts of cement, water, fine aggregate,
and coarse aggregate. However, if the goal is to design a more tailored
or high-performing concrete (HPC), more decision variables will likely
be included, such as aggregate size, superplasticizer dosage, and the
amounts of fly ash, slag, or silica fume. Similarly, the objectives of the
problem depend on the goals of the individual designer. For some de-
cision-makers, cost may be the only objective; for others, assessing
tradeoffs between multiple objectives might be important. For instance,
a decision-maker may be required to design both a concrete mixture
with minimum cost and CO2 emissions. As will be discussed in Section
4, the nature of the decisions, objectives, and constraints determine the
type of optimization problem.

3. Modeling the objectives

Models of the objectives refer to mathematical expressions that re-
late the decision variables to the desired objectives of a concrete mix-
ture design problem. Models for the objectives are essential because
they compute values of the objective functions that are used to optimize
the problem (Fig. 2).

As was discussed in Section 2, objectives relate decision variables to
the economic, mechanical, environmental, or other properties of con-
crete mixes; correspondingly, there are many expressions that are em-
ployed to model these objectives. These relationships include linear
combination, life cycle assessment, statistical, machine learning, and
physics-based models.

Table 1
Example decisions in concrete mixture design optimization problems.

Possible decision variable Classification of decision variable

Cement type Discrete
Supplementary cementitious material (SCM)

type
Discrete

Coarse aggregate size Discrete
Admixture type Discrete
Cement content (or w/c ratio) Continuous
SCM content Continuous
Coarse aggregate content Continuous
Fine aggregate content Continuous
Admixture content Continuous
Curing temperature Continuous

Table 2
Examples of possible constraints that could be imposed on a concrete mixture
design optimization problem.

Constraint on Type of Constraint Imposed by

Compressive strength Constraint on an
objective

Standard (ACI 318) [3] or
Designer (specification)

Cost Constraint on an
objective

Designer (specification)

Workability Constraint on an
objective

Designer (specification)

Water to cement ratio Constraint on a
decision

Standard (ACI 318) [3]

Amount of contaminants in
aggregate

Constraint on a
decision

Standard (ASTM C 33) [15]

Particle size distribution of
aggregate

Constraint on a
decision

Designer (specification)
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3.1. Linear combination models

Some objectives are adequately modeled by simple linear combi-
nations of relevant decision variables. A suitable application for these
relationships is modeling the cost of a concrete mixture as a function of
its individual mixture constituents. For instance, in a study conducted
by the Office of Infrastructure Research and Development, the singular
objective of the optimization problem was to minimize cost. A price was
attributed to each mixture constituent, and the cost was modeled as a
linear combination of cement, silica fume, high-range water reducing
admixture (HRWRA), coarse aggregate, fine aggregate, and water [16].
Linear combination equations are the simplest and, thus, most fre-
quently used for modeling a cost objective in concrete mixture design
[17–21]. However, care should be taken when problems with different
orders of magnitude are considered, because linear models may not
account for economies of scale. In other words, the cost of a constituent
for a small volume, for example, will not be the same for a large amount
of the same constituent. Thus, appropriate cost coefficients for the size
of the project being considered must be used.

3.2. Life cycle assessment models

In order to quantify environment-related objectives, life cycle assess-
ment (LCA) models are most often used. LCA is the process of estimating
environmental impacts (e.g., global warming potential, water depletion,
resource depletion, land transformation, eutrophication) for a particular
product or process [22]. Typically, LCA software or a life cycle inventory
database is used to attribute impacts to a particular material or process
within the material system considered [23–25]. LCA could be considered a
subset of linear combination models because the impact factors for a
material or process are simply multiplied by the amount of that compo-
nent in the system; however, we consider LCA models to be different from
other linear combination models because of the specific and well-defined
process of conducting a LCA. As an example of a LCA model, Loijos esti-
mated the global warming potential of all major pavement types in the
United States through the linear combination of factors for each stage in
the pavement life cycle [26]. In this scenario, global warming potential
was the objective being modeled as a linear combination of individual
contributions from within the system boundary. Similar LCAs have mod-
eled environmental impacts of specific types of concrete systems, including
high strength mixtures [27], mixtures with supplementary cementitious
materials (SCMs) [28,29], and mixtures with recycled aggregates [30].
Although these studies explicitly address the life cycle environmental
impacts of concrete, incorporation of environmental impact objectives into
concrete mixture design optimization is an emerging trend in recent lit-
erature. Only a few studies of those surveyed in this review employed
objectives related to life-cycle CO2 emissions [31,32]. As was the case for
linear cost modeling, the caveat about economies of scale is also true for
life cycle assessment; impact factors do not necessarily scale in a linear
fashion.

3.3. Statistical models

Another approach for modeling the relationship between the deci-
sion variables and a concrete mixture objective is statistical modeling.
Statistical models are typically used when data that relate the decision
variables and objective have been generated, but the mathematical
form the relationship should take is not known. In the literature, these
models are typically used to model objectives related to the mechanical
properties (e.g., compressive strength) of concrete because the re-
lationships are complex, but data on these properties can be observed or
collected experimentally [33].

The equation chosen for modeling a particular objective is depen-
dent on the property being modeled and is left to the modeler's dis-
cretion according to the complexity of the study. The simplest equation
to choose for property prediction is a linear equation:

= + +Y β β X εi0 (1)

where Y is the vector of properties being predicted, i represents the
decision variables, X is the design matrix representing the values of
each decision variable, βi is a vector of multipliers representing the
influence of the decision variables on each property, and β0 is the ex-
pected value of Y when all the X variables are equal to zero. A limitation
of this approach is the assumption that the relationship between the
mixture constituents and concrete objectives is linear, which can lead to
poor performance metrics for the model when the relationships being
modeled are complex and nonlinear [34].

Equations with greater complexity, such as quadratic or polynomial
models, include higher-order terms for modeling the influence of de-
cision variables (see Eq. (2)), where the h term represents the order of
the model. These models can exhibit improved predictive performance
compared to purely linear equations:

= + + + …+ +Y β β X β X β X εh
h

0 1 2
2 (2)

We use Akalin et al. [35] as an example. In this model, the concrete
mixture properties (Yi) that are being modeled are slump flow, com-
pressive strength, and appearance. In addition, there are six decision
variables: volume fractions of cement, water, silica fume, fly ash, nat-
ural sand, crushed sand, aggregate, and chemical admixture (i.e., su-
perplasticizer). For modeling of concrete properties, second-order
polynomials have been used to predict objectives, such as compressive
strength and slump. These models are attractive because they add
second-order terms to model the decision variables without the com-
putational complexity of a third-order or higher model [35–45].

It is also possible to build statistical models using equations with
interactive (multiplicative) terms. For instance, Simon chooses a
second-order polynomial with terms representing the interactions be-
tween the decision variables to model compressive strength [46]. These
models can sometimes improve predictive performance; however, the
danger of adding more terms to a statistical model is that the extra
terms might only be modeling random noise in the data and not

Fig. 2. Taxonomy of machine learning algorithms. Supervised machine learning techniques have been applied to concrete modeling problems. Note that artificial
neural networks can be used for supervised or unsupervised machine learning.
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actually improving predictive performance.
For statistics-based methods, comparing the predictive performance

and selecting an appropriate and robust model is essential. There are
several statistical performance measures that measure the goodness-of-
fit and predictive ability of the model. For instance, the coefficient of
determination (R2) is a measure of the proportion of the information in
the data that is explained by the model. The value of R2 ranges from
zero to one, with higher values indicating higher predictive power of
the model. For example, a R2 value of 0.8 indicates that the model is
able to explain 80% of the variation of the output. R2 is an initial in-
dicator of goodness of fit of a model; however, R2 should be used with
other performance measures, due to the inflation of R2 values when the
number of explanatory terms in a model increases. If a model has too
many explanatory terms, it produces a misleadingly high R2 value,
which is only modeling the random noise in the data.

The root-mean-square error (RMSE) is the square root of the mean-
square error and indicates the average distance of a data point from the
expected value provided by the model:

=
∑ −

=RMSE
y y
n

( )i
n

i i1
2

(3)

where yi is the observed value from the data, yi is the predicted value
from the model, and n is the number of observed values. Unlike R2, a
lower RMSE indicates a better model. RMSE is also scale-dependent,
meaning it does not range from zero to one, but rather can range from
zero to infinity. Therefore, RMSE can be used to compare errors of
different models on one dataset, but not among multiple datasets.

The mean absolute percentage error (MAPE) is a measure of pre-
diction accuracy of a model in which the error is expressed as a per-
centage:

∑=
−

=

MAPE
n

y y
y

100

i

n
i i

i1


 (4)

Like RMSE, a lower MAPE indicates a better model fit. Like R2,
MAPE should be used with other performance measures because MAPE
places a heavier penalty on negative errors than positive errors and
cannot be used if there are values with no error, where division by zero
occurs.

A critical point to consider when selecting a “best model” from the
many available statistical and machine learning models is robustness.
Especially for highly complex machine learning models with many
parameters, there is the possibility to generate an overfitted model and
conclude from the goodness-of-fit measures that the model has better
predictive performance than it does in reality. To account for this
problem, it is common to randomly split datasets into so-called training
and testing datasets. First, a model is fit on a majority of the training
dataset; then, the performance of the model is tested and reported using
the reserved testing dataset. This provides greater confidence in the
predictive performance of the model. A technique called k-fold cross-
validation is also used to account for overfitting. Similar to the concept
used in model training and testing, k-fold cross-validation partitions a
dataset into k equal-sized samples. For instance in 10-fold cross-vali-
dation, the dataset is split into ten subsamples. Ten different models are
fit, each with a different tenth of the original dataset being saved for
model testing. The average of the statistical performance measures for
the ten models is reported. Full descriptions and best practices for these
methods are thoroughly discussed in Kuhn and Johnson [47]. Because
of the model validation aspects of these methods, performance mea-
sures reported for cross-validated or testing datasets are more widely
accepted methods for comparing models.

3.4. Machine learning models

Although statistical methods provide explicit equations relating
decision variables to the objectives of concrete mixture design

problems, the performance of these equations are oftentimes in-
sufficient to describe such complex relationships. In contrast to the
aforementioned traditional statistical methods, machine learning
methods do not rely upon explicit equations; instead, machine learning
models are learning algorithms that find patterns in a set of training
data to predict future values. These techniques are more computa-
tionally expensive than statistical techniques; however, as will be
shown, researchers have increasingly applied machine learning
methods in concrete mixture design optimization because of their
ability to account for the complexity of concrete mixtures and their
properties.

The hierarchical taxonomy of machine learning methods is shown in
Fig. 2. Machine learning methods, a catch-all term for algorithms used
to find patterns in data, are generally classified into two main cate-
gories: unsupervised and supervised learning. In unsupervised learning,
there is simply a dataset, and it is the job of the algorithm to find re-
lationships and patterns within it; no output variables of the data guide
the algorithm into learning patterns within the data. A few of the
available algorithm types include clustering, neural networks, and blind
signal separation techniques. Contrastingly, in supervised learning, the
algorithm is trained on a dataset of both input and output variables, and
the goal is to “learn” the relationship between them. In supervised
learning, the output variables are known, and the algorithm can be
trained by comparing predicted output values to the actual output va-
lues and by adjusting the parameters of the algorithm to improve pre-
dictive performance. Within supervised learning algorithms, there are
classification-based methods (where the output variables are discrete)
and regression-based methods (where the output variables are con-
tinuous). Since the output variables (i.e., objectives) of a concrete
mixture are nearly always continuous, regression-based algorithms are
most often used in this field. Therefore, all of the examples that follow
are regression-based rather than classification methods.

Although all machine learning algorithms can be used to achieve a
similar goal (i.e., find patterns in data and improve predictive perfor-
mance), the structure of each type of algorithm and its strategies for
finding those patterns can differ significantly. Each of the following
machine learning methods discussed below is applicable to modeling
the relationship between the decision variables and concrete objectives
no matter the type of concrete or objective that is being predicted.
Below, we consider some of the most commonly used supervised
learning algorithms in concrete modeling, which include artificial
neural networks, instance-based learning, decision-trees and support
vector machines.

3.4.1. Artificial neural networks
One group of machine learning methods, artificial neural networks

(ANNs), is mathematical techniques based on the idea of interconnected
layers of nodes. In these types of methods, input nodes connect to
output nodes through one or more layers of intermediate, or hidden,
nodes. In Fig. 3, a schematic of the ANN technique is shown with an
example of possible inputs and outputs to the model. The links between
the nodes are weighted in order to relate importance of input variables
to the output variables. In concrete mixture design using ANNs, the
input layer nodes are concrete mixture decision variables and the
output layer is the objective(s). For instance, one study used ANN to
model the relationship between compressive strength (the output layer)
and 73 decision variables of the concrete mixture (the input layer).
These decision variables were grouped into four categories: material
proportions, basic information, measurement variables, and tempera-
ture and humidity history of the pour [48]. The predictive performance
of the model is improved by “training” the network on a dataset that
changes the weights between the nodes. The intermediate layer(s) of
the network do not represent real values; rather, they are used to give
weight to the interactions between variables. For a comprehensive re-
view of mathematical techniques within the ANN paradigm, see Drei-
seitl and Ohno-Machado [49].
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ANN methods gained acceptance as a modeling method in the mid-
1980s. The American Institute of Physics commenced their first annual
meeting related to Neural Networks for Computing in 1985. The
Institute of Electrical and Electronic Engineers' (IEEE's) 1st
International conference on Neural Networks was held in 1987 [50]. In
the field of concrete property modeling, Kasperkiewicz et al. was among
the first to model compressive strength of HPC using ANNs; this study
included six decision variables and obtained a R2 of 0.757 [51]. Since
then, researchers have applied ANN methods to wide-ranging problems
in cement and concrete research; they have been used to model several
types of concrete properties, including compressive strength, slump,
filling capacity, and segregation and for many types of concrete in-
cluding high performance concrete [51,52], self-consolidating concrete
[53,54], ready mix concrete [55], high strength concrete [55,56], ultra-
high performance concrete [57], recycled aggregate concrete [58], and
structural lightweight concrete [59].

Since each type of concrete includes different mixture constituents
and because each of these studies utilizes different experimental data-
sets, the models trained in each study are different and, thus, provide
different predictive performances of the properties of the mixture.
Compared to traditional statistical techniques, ANNs have the ad-
vantage of modeling the relationship between a large number of deci-
sion variables and objectives; statistical techniques can suffer from
over-fitting with many decision variables and explanatory terms in the
model. However, one disadvantage of ANNs is that the dataset used for
training the model must be large and diverse for the model to be ac-
curate over a wide range of decision variables and applicable to more
than one type of concrete.

3.4.2. Instance-based learning
A second group of algorithms, known as instance-based learning

techniques, refers to algorithms that compare a data point of input
values (a “query”) to some number of nearest neighbors within the
dataset to determine the output variable(s) of that data point. In in-
stance-based learning, an entire dataset is stored for retrieval and
comparison to a new query. This query is classified based on existing
data that it is close to, which can be determined in several ways. For
instance, in metric distance minimization, the properties of the query
are predicted based on the closest single data point to it [60]. The k-
nearest-neighbors algorithm is similar, except that this algorithm re-
turns an average of the properties of k nearest neighbors. Locally
weighted regression is a type of instance-based learning that builds a
local regression model by finding points near a query and weighting
them by distance. Generally, these algorithms differ in the number of

local points that are considered.
Instance-based learning concepts were first developed in the 1960s

with Sebestyen (1962), Nilsson (1965), and Cover and Hart (1967)
sequentially publishing studies which developed the nearest-neighbors
algorithm [61–63]. And although research in predicting concrete
properties has been dominated by ANN algorithms, a few studies have
used instance-based learning in order to explore the utility of these less-
used, computationally simpler machine learning algorithms. For in-
stance, Ahmadi-Nedushan employed multiple k-nearest-neighbors al-
gorithms to predict concrete compressive strength [64]. One of the
conclusions of this study was that these algorithms are less computa-
tionally intensive than ANNs and do not require training on the data;
however, instance-based algorithms can be sensitive to the presence of
localized outliers. Although these algorithms generally do not predict as
well as the other learning algorithms mentioned herein, they remain a
useful technique for private companies and public entities alike, that
have access to a large pre-existing dataset of mixture decisions and
resulting concrete properties and that can employ a simple instance-
based algorithm to quickly predict the properties of future queries.

3.4.3. Decision trees
Decision trees are a machine learning paradigm in which formal

rules are obtained from patterns in the data. Like ANNs, decision trees
must be trained on data in order to predict the properties of a query. For
discrete problems, the algorithms are classification trees. These algo-
rithms classify attributes of the data in order to make predictions about
new queries. For continuous datasets, the algorithm is called a regres-
sion tree. In this method, the algorithm conducts a series of tests on the
data in order to repeatedly partition it. The algorithm selects the par-
tition that minimizes the squared sum of the deviations from the mean
in the two partitions. Partitioning continues until user-supplied stop-
ping rules dictate that a branch should not be split further but rather
become a terminal node. This terminal node contains the predicted
values of the output variable.

The first regression tree algorithm was published by Morgan et al.
around the time that other machine learning algorithms were first being
developed [65]. Basic tree-based methods experience trouble finding
the model with best predictive performance. As a result, research in
machine learning since the 1960s has focused on augmenting the
concept of a simple tree-based model with additional design features.
For instance, multiple additive regression trees (MART) incorporate
“boosting” or fitting of a series of models, each with a lower rate of
error than the previous, and combining them for better performance.
Another method is bootstrap aggregating or “bagging” regression trees.

Fig. 3. Architecture of ANN. One or more hidden layers connect the output and input layer of dependent and explanatory variables, respectively.
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Bootstrap aggregating utilizes random resampling of the dataset (with
replacement) to develop an individual regression model [66]. This
procedure is repeated several times to develop multiple regression
models, which are then averaged to determine the final predictive
model. Another variation, called model trees, go a step further than
regression trees and fit a regression model within each node of the tree.
Among studies that compare the performance of machine learning al-
gorithms for predicting concrete mixture properties, variations on re-
gression trees often perform better than the other machine learning
algorithms. For instance, Erdal demonstrated that regression tree en-
sembles that use bagging and boosting have superior performance to
the simple decision tree model for concrete property prediction [67]. In
addition, the model tree approach has been employed to predict com-
pressive strength for a variety of concrete types including HPC [68],
recycled aggregate concrete (RAC) [69,70], fiber-reinforced polymer
[71], and high-volume mineral-admixture concrete [72].

3.4.4. Support vector machines
Support vector machines (SVMs) are a type of supervised learning

technique that use the concept of a “margin” which is either side of a
hyperplane that separates two general data classes. The goal with this
technique is to maximize this margin between these two data classes,
thus creating the largest possible distance between the hyperplane and
the data points on either side. The optimum separating hyperplane is
found, and the data points that lie on its margin are called support
vector points. The solution to the problem is the linear combination of
these support vector points. For a more in-depth explanation of the
methods used in SVM learning, Byun provides a valuable overview
[73].

The original SVM algorithm was invented in 1964 by Vapnik and
Chervonenkis [74]; however, it was not until 1992 that SVMs ap-
proached their current form when Boser et al. developed a training
algorithm to optimize margin classifiers [75]. SVMs were not applied to
the field of concrete property modeling until much later, but have since
become a widespread machine learning method for concrete perfor-
mance prediction. For instance, in 2007, Gupta et al. were among the
first to predict concrete compressive strength using SVM, where, for the
best model, R2= 0.992 [76]. This study illustrated that SVMs are a
useful modeling tool for concrete property modeling particularly when
a dataset is small, because the user only needs to define two parameters.
A number of other researchers have since used SVMs to predict a
variety of concrete mixture properties, such as elastic modulus [77],
compressive strength [68,76,78–80], and splitting tensile strength [81].

3.4.5. Comparison of machine learning models
Ideally, the body of research that has applied machine learning al-

gorithms to predict concrete properties would lead to identifying the
algorithm that has the best performance. Indeed, machine learning
methods can outperform multiple linear regression. However, making
definitive conclusions about the “best” algorithm remains difficult—a
principle of the No Free Lunch Theorem [82], which states that even
very good models perform poorly on some types of problems. Thus, the
best performing algorithm is often dependent on the dataset or problem
from which it is learning.

Although there is no universal best or silver-bullet algorithm, the
bagging, boosting, and other calibrating improvements that have been
made with regression tree algorithms have led to predictive models
with much improved performance for concrete-related problems. In
studies comparing multiple machine learning algorithms, regression
and model tree variants often perform the best or at least very well. For
instance, Chou compared the average performance of ANN, MART,
SVM, multiple linear regression, and bagging regression trees to de-
termine the best learning algorithm for predicting compressive strength
of concrete mixtures [68]. All of the algorithms outperformed multiple
linear regression by a large margin, and the MART performed best in R2

and RMSE. The MAPE metric was best with the bagging regression tree.

Another study by Deepa et al. compared the performance of an ANN,
model tree, and multiple linear regression and concluded that the
model tree performed best, closely followed by the ANN in comparison
of R2 and RMSE values [70]. Therefore, at present, regression tree al-
gorithms are a good choice for modeling concrete properties; however,
machine learning is a rapidly growing field that has demonstrated po-
tential for expansion and improvement in property prediction of fresh-
and hardened state concrete.

3.5. Physics-based models

Physics-based models are a set of mechanistic relationships between
the decision variables and objectives. These models differ from those
discussed thus far in that physics-based models seek to represent the
underlying physics of a system and can only be used if the objective in
question can be modeled mechanistically. If the mechanisms and in-
teractions are well-understood, physics-based models are useful for
accurate prediction of objectives from a set of decision variables.
However, for cement and concrete, these types of models do not exist
for the whole mixture design problem; rather, they exist for certain sub-
problems associated with concrete properties. For instance, some phy-
sics-based models predict aggregate packing density as a function of
particle size distribution. These models use a particle packing model to
correlate particle size distribution to aggregate packing density and to
strength and modulus of elasticity, as well as creep and shrinkage.
Other research correlates rheological properties of fresh concrete, such
as plastic viscosity, to the explanatory variables from the concrete
mixture [83–85]. These models are based on the science of rheology
and fluid mechanics and are important for predicting fresh-state prop-
erties like workability and slump. Chidiac and Mahmoodzadeh [86]
evaluated the predictive capabilities of these plastic viscosity models
and found that the model from Sudduth et al. performed best among the
physics-based models. Still others have modeled how characteristics of
aggregates (e.g. mineralogy, material properties, and aggregate source)
affect concrete performance [87]. A possible future area of concrete
property modeling is so-called hybrid modeling, which crosses statis-
tical learning models with physical models for concrete behavior. These
types of models have been used in other fields of civil engineering, such
as building systems [88,89].

Like statistical and machine learning models, physics-based models
can also be tested on their statistical ability to describe data. Barnhouse
and Srubar [90], for example, demonstrated that established physics-
based models for hydraulic conductivity of macroporous concrete ac-
tually had a negative R2 value, indicating that data is sometimes poorly
described by physics-based models.

4. Optimization methods

The previous section focused on the development of equations and
models for modeling a concrete mixture; this section discusses mathe-
matical optimization techniques that are most commonly employed to
optimize the design of concrete mixtures.

4.1. Formal definition of optimization

The formal optimization of a problem involves finding the best
feasible values of the objective functions in a defined domain. Utilizing
terminology of Coello Coello et al. [9], optimization is broadly defined
as:

Minimize:

= …F x f x f x( ) ( ( ), , ( ))k1 (5)

subject to:

= = …g x i m( ) 0, {1, , }i (6)

and:
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≥ = …h x j p( ) 0, {1, , }j (7)

A multi-objective problem solution minimizes the objective function
in the vector F(x), where x is an n-dimensional decision variable vector
x=(x1…xn) in the decision space, Ω. Single-objective optimization can
be considered a special case, in which there is a single scalar objective.
There exist m inequality constraints and p equality constraints that
subject a solution x to a set of requirements that must be met; the so-
lution, x, is feasible if it meets all constraints.

In the presence of objective conflicts, a single solution will not si-
multaneously optimize all components of the F(x) objective function.
Thus, the goal of multi-objective optimization is to generate a tradeoff
set of solutions to the problem, using the concept of Pareto optimality.
A vector of decision variables, x, is Pareto optimal if no other feasible
vector can minimize some objective without causing a simultaneous
increase in one or more other objectives. Furthermore, a Pareto optimal
set is the set of all decision variable vectors, where the corresponding
objectives of the problem cannot be improved simultaneously.

In the case of single-objective optimization, an optimal solution is a
solution from the decision space that has the minimum value of the
singular objective function while still maintaining acceptable values of
the constraints. With single-objective problems, there are no tradeoffs
or Pareto curves to consider; instead, the output is a single solution in
which the objective function has been optimized.

In the field of optimization, the characteristics of the decisions,
objectives, and constraints determine the type of optimization problem
and what methods are best-suited to finding a solution. Because of the
diversity of different decisions, objectives, and constraints available,
one can argue that there are infinite possible problem formulations in
concrete mixture design optimization that blend different types of ob-
jectives and mathematical solution techniques. However, in this review
we focus on a few of the most important types of problem formulations
in this field and the optimization techniques that are applicable to
them. In the following sections, we concentrate on: linear problems,
special cases of nonlinear problems, problems with machine learning
objective functions, and multi-objective problems with at least one
nonlinear objective.

4.2. Linear programs

An optimization problem is linear (also called a linear program
(LP)) when the objective function(s) are linear and where each con-
straint is either a linear equality or linear inequality. One of the benefits
of a linear problem formulation is that if a feasible solution to the
problem exists, then it is guaranteed that one or more optimal solutions
can be found. LP is a subset of mathematical programming, where ex-
clusively linear expressions are used; furthermore, one of the first and
most popular mathematical programming techniques is the simplex
method. This method tests adjacent vertices of the feasible set of so-
lutions and determines whether the objective function improves, wor-
sens, or remains unchanged [91]. Another technique for finding the
optimum value of an LP is the interior point method; here, the solution
is found by iteratively moving through the interior of the feasible region
[92]. One example of a LP formulation is a study in which the objective
of the design problem was to minimize the rate of corrosion [84]. The
rate of corrosion was assumed to be a linear function of the decision
variables (cementitious materials content, water-to-cementitious-ma-
terials ratio, fine-to-total aggregate ratio, concrete cover thickness, and
chloride concentration). In this particular study, the optimization pro-
blem was a LP because both the objective and constraints were assumed
to be linear. However, in the field of concrete mixture design optimi-
zation, studies like this are rare, because many properties of concrete
are not well-modeled by linear functions of the decision variables. Thus,
a discussion of the methods for solving problems with nonlinear ob-
jectives and constraints is merited.

4.3. Special cases of nonlinear programs

An optimization problem is nonlinear when at least one of the ob-
jectives or constraints is a nonlinear function. Nonlinear programs
(NLP) allow decision-makers to include objectives and constraints that
are better represented by nonlinear expressions of the decision vari-
ables (e.g., compressive strength). However, unlike, LPs, even if a so-
lution to an NLP exists, there is no single technique that is guaranteed to
find the solution for any kind of NLP.

Nevertheless, the literature suggests several techniques to employ
nonlinear models for a problem's objectives or constraints, while still
retaining the ability to use mathematical programming methods. One
such special case is the use of quadratic programming; this is char-
acterized by the use of a quadratic relationship to model the objective
function of the problem while retaining all linear constraints [93]. For
constrained quadratic problems, the interior point method and active
set methods are appropriate solution methods.

Quadratic programming is common in the area of concrete mixture
optimization because it enables researchers to incorporate some of the
nonlinearities of concrete behavior while guaranteeing the optimal
solution is found if it exists. In the literature, the process of optimizing
concrete mixtures using quadratic objective functions in an optimiza-
tion study is often called the response surface methodology (RSM); RSM
involves (1) factorial experimental design, (2) fitting the best poly-
nomial equation, and (3) optimizing that equation under the given
constraints [94]. In the field of concrete mixture design optimization,
researchers have conducted RSM studies with quadratic expressions to
optimize compressive strength [37,40,44], slump [41], and void con-
tent [43] subject to a variety of linear constraints. In this process, it is
not necessarily true that a quadratic model will be better than a linear
model for a given objective function. Statistical significance tests are
typically performed on each term of the model to determine which are
necessary and to determine if a quadratic model is indeed better than a
linear model [95]. In the aforementioned RSM studies, it was demon-
strated that retaining quadratic terms was statistically significant,
meaning they outperform a purely linear objective function.

Another special case of NLPs is characterized by a linear objective
and one or more nonlinear constraints. In these optimization problems,
a solution technique called the gradient projection method can be in-
voked [96]. In the realm of concrete mixture optimization, this type of
problem formulation and optimization method is most often selected
when the objective is to minimize cost and the problem has one or more
nonlinear constraints. As was discussed in Section 3, cost is often as-
sumed to be a linear objective because the total cost of a concrete mix is
simply a linear combination of the cost of the mixture constituents. This
objective can combined with nonlinear design constraints such as
meeting targets for compressive strength, slump, air content, and paste
drying time [38–40,42,44].

4.4. Metaheuristic optimization

An alternative optimization approach, known as metaheuristic op-
timization – or “guided search” – seeks to find the global optimal so-
lution to optimization problems, although finding the truly global so-
lution is not guaranteed. Metaheuristic optimization techniques are
useful when the relationships being used to model the objectives and
constraints do not lend themselves well to the aforementioned mathe-
matical programming approaches. Two examples of this are when there
are multiple nonlinear objectives and constraints and when the objec-
tives or constraints are modeled using machine learning methods.

There are many metaheuristic optimization algorithms that have
been developed to search for solutions to optimization problems; we
direct the reader to Dasgupta et al. [97] and Coello Coello et al. [9],
which provide discussion and analysis of the metaheuristic algorithms
available. In the field of concrete mixture optimization, metaheuristics
based on the concepts of evolution and musical search for perfect

M.A. DeRousseau et al. Cement and Concrete Research 109 (2018) 42–53

49



harmony are most common. Evolutionary algorithms (EA), for instance,
are iterative algorithms where the concepts of natural selection and
evolution inspire the mechanisms for generating and searching for
optimal solutions [98]. EAs work by (1) generating a population of
potential solutions to the problem, (2) evaluating those potential so-
lutions based on fitness functions, (3) selecting some portion of the best
solutions to go through crossover and mutation algorithms in order to
introduce diversity to the population, and (4) repeating this process
over many generations [9]. Harmony search (HS) algorithms are in-
spired by a musician's process of searching for perfect harmony during
improvisation. Like EAs, HS algorithms generate a set of random pos-
sible solutions to the problem, change some values of the set of possible
solutions, and reevaluate the new solutions over many cycles [99].
Although research in the area of concrete mixture optimization uses
algorithms of several names, EAs and HS algorithms are all broad ca-
tegories of solvers, and it is difficult to show that one of these meta-
heuristics performs significantly differently from the others. In fact,
Weyland demonstrated that HS algorithms do not provide any novelty
as a new metaheuristic beyond the new terminology [100]. Despite the
lack of a significant difference between EAs and HS, we continue to use
this terminology below because both are referred to separately in the
literature.

4.4.1. Metaheuristic optimization for multi-objective problems
Given that concrete mixture design involves multiple competing

performance criteria, multi-objective optimization is a growing area of
concrete mixture optimization research. Metaheuristic algorithms are
often the optimization tool of choice for multi-objective problems in
concrete mixture design that include multiple nonlinear relationships.
In this field of optimization, evolutionary, genetic, and harmony search
algorithms dominate the literature. For instance, some studies have
looked to minimize cost while maximizing physical concrete perfor-
mance measures [36]. Other studies in this field seek to minimize both
cost and environmental impacts [12,31,32,101]. Still others aim to
optimize multiple physical performance objectives at once [102–104].
In all of these cases, evolutionary and harmony search algorithms were
the methods chosen to search for the Pareto optimal set because many
nonlinear objectives and constraints were selected.

4.4.2. Metaheuristic optimization for problems employing machine-learning
models

Another common use of metaheuristic algorithms in the area of
concrete mixture optimization is for problems which incorporate ma-
chine learning models. Since these models are not explicit expressions,
mathematical programming techniques cannot be applied. Instead, the
use of metaheuristics has allowed for the optimization of problems with
objectives or constraints that are modeled by machine learning algo-
rithms. For example, Cheng et al. maximized the compressive strength
of HPC by employing an evolutionary algorithm when the compressive
strength was modeled by a SVM [11]. As another example, Ji et al.
solved for the minimum cost of reactive powder concrete when the
constraints (compressive strength, splitting tensile strength, and slump)
were modeled by an ANN; this was accomplished using a harmony
search algorithm [13]. Using both machine learning algorithms and
metaheuristic optimization algorithms in tandem can become compu-
tationally intensive. However, using machine learning to model the
objectives has been shown to provide greater predictive performance of
actual concrete mixture behavior compared to linear or quadratic
models of properties like compressive strength or slump [105,68].
Therefore, for highly nonlinear concrete objectives and where accurate
modeling is desired, using machine learning models and metaheuristic
optimization can be useful tools.

5. Future trends in concrete mixture design optimization

This review has illustrated the wide variety of modeling and

optimization techniques that have been applied in the field of concrete
mixture design optimization. Decision-makers have many options for
tools and approaches when optimizing problem formulations; however,
there are several key areas where the field could be expanded or im-
proved. Below, we discuss potential future opportunities for such ex-
pansions and improvements to the field of concrete mixture design
optimization.

5.1. Include alternative objective functions

In the field of concrete mixture design, compressive strength and
cost are often considered the two most important objectives in opti-
mizing a mixture. Correspondingly, many optimization and modeling
studies in the literature focus solely on one or both of these objectives.
However, in real-world concrete design and placement, many addi-
tional important objectives and constraints must be considered in-
cluding fresh state properties, such as set time and slump. Set time, for
instance, is dependent on cement type, cement fineness, the w/c ratio,
and the use of SCMs and admixtures [10]. Slump, an indicator of
workability, is influenced by the amounts of water, air entraining
agents, water reducers, superplasticizers, and the shape and gradation
of aggregates [10]. Since fresh concrete must be workable and set time
properly tailored for specific applications, an improved ability to ac-
curately predict and subsequently optimize these properties with re-
spect to cost and strength objectives would aid designers. Thus, we
argue that applying some of the more advanced statistical and machine
learning techniques to modeling and optimizing these properties would
be a valuable contribution to the field.

Furthermore, it is now more common for environmental objectives
to be thoroughly considered and quantified. Concrete is the most-used
engineering material in the world and, consequently, its production
energy and global warming potential – a relative measure of all
greenhouse gas emissions of a product or process - are particularly high.
An increase in global awareness of so-called embodied emissions of
buildings [106] has prompted an industry-wide movement over the
past decade to mandate quantification through lifecycle assessment
(LCA) and subsequent reductions in the environmental impacts of
building materials. While global warming potential and depletion of
non-renewable energy resources have emerged as primary metrics re-
ported in LCAs, ozone depletion, acidification, and eutrophication are
environmental impact categories that should also be considered in the
design of more environmentally sustainable concrete mixtures. As was
discussed in Section 3.1, some researchers have estimated life cycle
environmental impacts of certain types of concretes in an optimization
context. However, only a few studies have attempted to minimize en-
vironmental objectives by changing the decision variables [31,32]; in-
stead, most studies calculate the impacts with mixture designs set a
priori. Therefore, incorporating environmental objectives into optimi-
zation studies will advance the field by allowing researchers to more
holistically examine impacts of different decision variables on en-
vironmental as well as structural and economic objectives and con-
straints.

5.2. Incorporate many objectives

Another suggestion for future work in the field is to consider many
objectives simultaneously. Currently, most optimization studies in
concrete mixture design consider only one or two objectives. However,
in real applications, a relatively large number objectives are simulta-
neously important. Therefore, a valuable advancement would be to
develop tools that consider the tradeoffs between many different and
usually competing objectives. The advantages and disadvantages of so-
called many-objective optimization are discussed in Fleming et al. [107].
The assumed advantage of many-objective optimization is that con-
sidering more objectives adds information and helps decision-makers
understand tradeoffs between objectives. However, there can also be
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challenges associated with considering many objectives, including the
problem of data visualization, how to process and analyze the data (i.e.,
how to choose a solution), and high computational intensity. To par-
tially relieve the first two of these challenges, data visualization tech-
niques, such as parallel coordinates, can be helpful for visualizing,
understanding, and choosing between Pareto-optimal solutions. This
particular data visualization technique was pioneered by Alfred Insel-
berg in the 1970s as a way to visualize high-dimension data [108]. As
an example of many-objective optimization, a four-objective study
could consider cost, compressive strength, CO2e emissions, and dur-
ability of the concrete. The added value of including more objectives is
that the decision-maker can analyze how these objectives interact. For
instance, it is possible that including durability would quantitatively
demonstrate to a decision-maker that a higher-cost solution could pay
off environmentally and economically in the long-run.

Optimization with many objectives has become well-applied in
other civil engineering disciplines. For instance, in the realm of building
systems engineering, one study looked at the challenge building owners
face to identify an optimal set of building upgrade measures for max-
imizing the sustainability of their buildings. This study included ob-
jectives of (1) minimizing environmental impacts (e.g., CO2 emissions,
refrigerant impacts, water consumption), (2) minimizing building up-
grade costs; and (3) maximizing the number of earned points from the
United States Green Building Council (USGBC) Leadership in Energy
and Environmental Design (LEED) rating system [109]. Similarly, in the
field of water resources engineering, many-objective optimization has
been applied to enhance decision-making. For instance, Smith et al.
[110] propose a participatory framework for determining what objec-
tives are important to water supply managers. The objectives included
minimizing time in restriction, minimizing costs, maximizing total end-
of-year storage, and maximizing the amount of time a reservoir spends
above a given elevation [110]. Given the success in other civil en-
gineering fields in considering multiple objectives, it is reasonable that
a many-objective approach in the field of concrete mixture design may
be valuable.

5.3. Standardize optimization terminology

Finally, we suggest that optimization terminology be standardized
across the field of concrete mixture design. Since concrete behavior is
considered in many realms, such as experimental, computational, and
industry settings, the term optimization can have many meanings. On
the experimental side, optimization often refers the use of regression
and response-surface methodologies to look at relationships between
several explanatory variables and a response variable [111]. The op-
timal response is found under the specific range of decision variables
considered. Typically, experimental design methods, such as the Box-
Behnken or full factorial designs methods, are used [112]. Thus, opti-
mization in this context refers to the experimental design and finding a
best-performing response (as represented in Fig. 1a). In other studies,
optimization refers to the mathematical and computational methods
used to solve the mixture design problem when relationships between
the decision variables and objectives have been modeled (represented
in Fig. 1b). In other cases, the term optimization is sometimes used to
refer to the improvement of individual constituents of concrete mix-
tures. An example of this is when the aggregate grading is altered to
improve packing [20,113] or lowering the cement content in order to
reduce environmental impacts [114].

In order cultivate more standardized terminology, the use of
modifiers would help clarify the user's meaning of the word optimiza-
tion. For instance, specifying that researchers have conducted experi-
mental optimization or computational optimization would clarify which
techniques are used in the study. Furthermore, studies that optimize a
constituent of the mixture design should be clear about the constituent
system which is being optimized as well as the optimization approach
(i.e., experimental vs. computation).

6. Conclusions

Traditionally, in the field of concrete mixture design, decision-ma-
kers have cared most about achieving required targets for certain
concrete properties, such as attaining a specified early-age compressive
strength while maintaining a workable concrete. Recently, however,
the field has beendeveloping and applying new computational tools and
techniques to design concrete mixtures with tailored and fine-tuned
properties. Recent work has focused on modeling and optimizing im-
portant concrete properties - such as compressive strength and slump -
as a function of individual mixture constituents, necessitating models
that relate consitutents to concrete performance in the fresh- and har-
dened-state.

This paper examined the types of problem formulations that are
typical in the field of concrete mixture design optimization and dis-
cussed methods available for modeling and optimizing concrete pro-
blem formulations, as well as their applicability to different types of
design problems. The methods used to model concrete objectives can
involve models based on linear combination, statistics, machine
learning, and physics. In the realm of optimization, mathematical
programming and metaheuristic search methods are commonly used.

This review also highlighted future directions of research in this
field. Increasingly, decision-makers must consider multiple objectives
and satisfy many design criteria, prompting an ever-growing need for
concrete mixtures that are cheaper, stronger, more workable, durable,
and more environmentally sustainable. Thus, developing appropriate
and accurate models for these objectives and implementing multi-ob-
jective optimization methods will contribute to progress in the field.
Advancements in the area of life cycle assessment and data visualiza-
tion will also contribute to designers' abilities to make informed deci-
sions about concrete mixtures that most optimally satisfy multiple
performance criteria.
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